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1.Some definition.

- Meta-Learning: Meta-learning, or learning to learn, is the science of
systematically observing how different machine learning approaches perform on a
wide range of learning tasks, and then learning from this experience, or meta-data,
to learn new tasks much faster than otherwise possible.

- Few-shot Learning: As the name implies, few-shot learning refers to the
practice of feeding a learning model with a very small amount of training
data, contrary to the normal practice of using a large amount of data.

- Deep Meta-learning: Due to the deep structure of Concept generator, the
network for meta-learning call Deep meta-learning.



2.The starting point of this paper

[Abstract] Few-shot learning remains challenging for meta-learning that learns a learning
algorithm (meta-learner) from many related tasks. In this work, we argue that this is due to the
lack of a good representation for meta-learning, and propose deep meta-learning to integrate the
representation power of deep learning into meta-learning. The framework is composed of three
modules, a concept generator, a meta-learner, and a concept discriminator, which are learned
jointly. The concept generator, e.g. a deep residual net, extracts a representation for each instance
that captures its high-level concept, on which the meta-learner performs few-shot learning, and the
concept discriminator recognizes the concepts. By learning to learn in the concept space rather
than in the complicated instance space, deep meta-learning can substantially improve vanilla meta-
learning, which is demonstrated on various few-shot image recognition problems. For example, on
5-way-1-shot image recognition on CIFAR-100 and CUB-200, it improves Matching Nets from
50.53% and 56.53% to 58.18% and 63.47%, improves MAML from 49.28% and 50.45% to
56.65% and 64.63%, and improves Meta-SGD from 53.83% and 53.34% to 61.62% and 66.95%,
respectively.



3.1 The meaning of concepit.

Concept: The set of features
differentiate the subset can be called
concept. The concept is a kind of higher
level information than the raw data. In
this model, every 1image will be
transformed into concept by Resnet-50.
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3.2 The three modules of DML.
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3.3 The DML structure

Concept discriminator
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3.4 The algorithm.

Deep Meta-Learning: Learning to Learn in the Concept Space

Algorithm 2 Deep Meta-Learning with Meta-SGD

[: Input: task distribution p(7 ), labeled dataset D, batch size n of tasks, batch size m of instances, learning rate /3
2: Output:0g,0p,00 = {¢p,}

3: Initialize Og,0p, ¢,

4: while not done do

5: Sample n tasks T; ~ p(7T) and m instances (x;,y;) ~ D

6: foreach 7; do

7 Et-raill(’ﬂ)(qsﬂgg) — m _ E ((f¢(g(x)),y),

(x,y)€train(7;)
(vb: A ¢ -« OV¢£train(77)(¢ﬂ 99);
Liest(7)(91,00) < femeryr . o e (G(x)),y);
(x,y)Etest (T;)
10:  end for . .
11: (0g,0p,¢,) < (0g,0p,, ) — BV |- 3= Liest(7) (#5,05) +X 57 3 UD(G(x;5)),¥;)|;
i=1 j=1

12: end while




4. The result and the contributions.

Method | Minilmagenet | Caltech-256 | CIFAR-100 | CUB-200

| 5-way-1-shot | 5-way-5-shot | 5-way-1-shot | 5-way-5-shot | 5-way-1-shot | 5-way-5-shot | 5-way-1-shot | 5-way-5-shot
Matching Nets | 43.56 £ 0.84 | 55.31 £0.73 | 48.09 = 0.83 | 57.45 £ 0.74 | 50.53 £ 0.87 | 60.30 = 0.82 | 56.53 +0.99 | 63.54 + 0.85
DEML-+Matching Nets | 55.84 = 0.94 | 59.88 + 0.73 | 52.97 £0.99 | 59.42+£0.75 | 58.18 £ 1.09 | 63.12+ 0.85 | 63.47 + 1.10 | 64.86 + 0.87
MAML | 48.70 + 1.84 | 63.11 £0.92 | 45.59 = 0.77 | 54.61 £0.73 | 49.28 £ 0.90 | 58.30 = 0.80 | 50.45 £ 0.97 | 59.60 + 0.84
DEML+MAML | 53.71 £ 0.89 | 68.13 £ 0.77 | 56.81 = 1.01 | 70.54 £0.73 | 56.65 + 1.09 | 68.66 £ 0.85 | 64.63 £ 1.08 | 66.75 + 0.89
Meta-SGD | 50.47 + 1.87 | 64.03 £0.94 | 48.65 = 0.82 | 64.74 £0.75 | 53.83 £ 0.89 | 70.40 = 0.74 | 53.34 £0.97 | 67.59 + 0.82
DEML+Meta-SGD | 58.49 = 0.91 | 71.28 + 0.69 | 62.25 + 1.00 | 79.52 £ 0.63 | 61.62 + 1.01 | 77.94 + 0.74 | 66.95 + 1.06 | 77.11 = 0.78

Comparison between DML and vanilla meta-learning.



4. The result and the contributions.

- Propose deep meta-learning to integrate the power of deep learning into
meta-learning

- Equip a meta-learner with a concept generator to enable learning In the
concept space while employing a concept discriminator to enhance the
concept generator, and show that all three modules can be trained jointly in
an end-to-end manner.
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Thanks for your Listening.



