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Abstract

The Extreme Learning Machine (ELM) is a single-hidden layer feedforward neural
network (SLFN) learning algorithm that can learn effectively and quickly. The
ELM training phase assigns the input weights and bias randomly and do not
change them in the whole process. Although the network works well, the random
weights in the input layer can make the algorithm less effective and impact on
its performance. Therefore, we propose a new approach to determine the input
weights and bias for the ELM using the restricted Boltzmann machine (RBM),
which we call RBM-ELM. We compare our new approach with a well-known
approach to improve the ELM and a state of the art algorithm to select the
weights for the ELM. The results show that the RBM-ELM outperforms both
methodologies and achieve a better performance than the ELM.

Keywords: Extreme learning machine; Restricted Boltzmann machine;
Neural networks; Weights initialization

1 Introduction

The extreme learning machine (ELM) is an approach for training single-hidden layer feedforward
neural network (SLFN) proposed by Huang et al. (2004) and Huang et al. (2006). Its use has become
popular due to its fast and analytically training phase. Comparing it with backpropagation Rumelhart
et al. (1986), the most common algorithm used to train neural networks, its learning stage can be
thousand of times faster and it can achieve a better generalization Huang et al. (2006).

The ELM learning algorithm assigns the weights from the input layer to hidden layer (W) randomly.
Then, it computes the weights from hidden layer to output layer (3) analytically using the least-
squares method. The ELM has been used to solve many different problems, such as classification data



Huang et al. (2010); Xu and Wang (2017), time series forecasting Butcher et al. (2013), regression
problem Huang et al. (2012); Shihabudheen and Pillai (2017), among others.

Although Huang et al. (2004) proved the universal approximation capability of SLFNs with unchanged
random weights throughout the whole training phase, this issue has attracted the efforts of many
researchers. As shown in Wang et al. (2011), the randomness of the input weights can make the
algorithm less effective, depending on the assigned values for W. Moreover, this point also influences
the algorithm performance, i.e., the ELM output is not quite stable Wang et al. (2015). Due to this
issue, many approaches have been proposed aiming to improve the generalization and performance of
the ELM. Some of these approaches avoid assigning the input weights by providing a different way to
compute the values of the hidden neurons, i.e., the feature map. One standard approach is the K-ELM,
presented by Huang et al. (2012). It is a deterministic methodology that uses a suitable kernel function
specified by the user to compute the hidden neurons. The K-ELM can achieve good performance,
however, it does not work well when the database grows, because it demands a large computational
time and memory consuming. We can highlight other methodologies, such as the PCA-ELM, a
deterministic algorithm proposed by Castafio et al. (2013), which is used to initiate any hidden
neurons based on principal component analysis (PCA) and the PL-ELM, an architecture developed
by Henriquez and Ruz (2017), which is based on a non-linear layer in parallel by another non-linear
layer and with entries of independent weights. Deep learning techniques have also been used to
improve the ELM performance. Kasun et al. (2013) presented the ELM autoencoder (ELM-AE) and
Sun et al. (2017) expanded it developing the generalized ELM autoencoder (GELM-AE). Inspired by
ELM-AE, Tissera and McDonnell (2016) proposed a deep neural network (DBN) using ELMs as a
stack of supervised autoencoders. All these approaches are used with the same goal of the K-ELM
and PCA-ELM, i.e., to extract the feature map of the first layer and to avoid the random weights
assignment.

Other approaches focus on finding a way to provide a better initialization of the input weights, and
consequently improving the ELM performance. Han et al. (2013) introduced an optimization of
the input weights via particle swarm optimization (PSO). Cervellera and Maccio (2016) presented
an algorithm that replaces the random initialization by a deterministic one using low-discrepancy
sequences (LDS). Recently, Wang and Liu (2017) proposed the ELM-RO, a state of the art approach
that is mainly based on the Gram-Schmidt orthogonalization of the input weights, which achieves a
better performance than the standard ELM and other algorithms that compute the weights for the
ELM.

In this work, our main contribution is to present a new approach to determine the input weights for
the ELM using the restricted Boltzmann machine (RBM) Smolensky (1986); Hinton (2002), which
we call RBM-ELM. Basically, the RBM is an energy-based system that can learn the probability
distribution of a database by unsupervised learning. As autoencoders, RBMs are widely used to
compose DBNs Hinton et al. (2006). Therefore, the architecture presented by Tissera and McDonnell
(2016), the stack of autoencoders to extract features from the data and set it as the ELM hidden
nodes, can be done by using RBMs. Indeed, it was introduced by Cao et al. (2014). Nonetheless, we
need to make clear this is not our intention in this work. We just use one RBM to determine good
values for the ELM input weights and then proceed with the standard ELM training. As we present
throughout this paper, we need just a few RBM training epochs to set the ELM input weights. In the
experiments section, we show that our approach has a relatively fast learning phase and achieves a
good performance. Furthermore, we compare the RBM-ELM with the well-known ELM-AE and
with the state of the art ELM-RO. Experimental results show that the RBM-ELM can outperform
them for the benchmarks used in this paper. The remainder of the paper is organized as follows. In
section 2, we present a brief background on ELM and RBM. Section 3 describes our new approach.
In section 4, present the experimental results. Lastly, in section 5 we draw our final conclusions.

2 Background

2.1 Extreme learning machine

The extreme learning machine approach was developed specifically to handle with SLEN architecture.
We depict in Figure 1 an SLFEN, where x is the input data, y is the output layer, W is the weights



matrix of the input layer, 3 is the weights matrix of the hidden layer and b is the bias of the input
layer. We represent all these notation as follows:
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where m, s and k are the number of input, output and hidden neurons, respectively. Observe that the
weights and bias are put together in the same matrix to ease the computation.

Figure 1: The architecture of a single-hidden layer feedforward neural network

In the ELM algorithm, the matrix W is initialized randomly by sampling all the weight values from
a continuous distribution, normally the uniform distribution in the interval [-1,1], and it does not
change during the whole learning phase. Huang et al. (2006) proved that we can obtain the matrix 3
performing an analytical process maintaining the universal approximation capability for the SLFNs.
After sampling the weights we compute the hidden neurons, that is, the feature map (H), as follows:
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where f(.) is the activation function, e.g., a logistic function, ¢ = (1,..., N) and N is the number

of samples in the training set. Next, we compute 3 by solving the linear system through a simple
generalized inverse operation, as described by:

HB=Y - pB=HY 3)

where H is the Moore-Penrose generalized inverse of H (Serre, 2002). The Moore-Penrose based
solution is one of the least-square solutions for a general linear system. It can achieve: the smallest
training error, the smallest norm of the weights and, as consequence, a good generalization perfor-
mance. Moreover, it does not get stuck in local as the gradient descent-based learning methods
(Huang et al., 2006). A pseudocode of the ELM is presented in Algorithm 1.

2.2 Restricted Boltzmann machine

The restricted Boltzmann machine (RBM) is a stochastic network composed of a visible layer (v)
and a hidden layer (d). As illustrated in Figure 2, there is no connection within a layer, v and
d have symmetric connectivity W and each layer has its own bias, a and b. During the training
phase, the RBM learns the probability distribution over the input data training through unsupervised
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Algorithm 1: Training an SLEN by the ELM procedure

Function elm_training (X, Y, k, W, b):
Input :A training set {X,Y};
The number of hidden neurons k;
The input weights W and the bias b;
if W and b are empty then
| Sampled them by a uniform distribution in the interval [—1, 1];
end
Compute the feature map H from equation 2;
Compute 3 from equation 3;
Return: W, H and 3;

Figure 2: The architecture of a RBM with m visible nodes and & hidden nodes

learning. Therefore, this network has been applied in different tasks, such as feature extraction,
pattern recognition, dimensionality reduction, data classification etc (Hinton, 2010).

Originally, the RBM was proposed for binary input data. However, Hinton and Salakhutdinov (2006)
extended it for continuous input data. In this paper we use the continuous approach.

In the RBM model, each configuration (v,d) has an associated energy value defined by:
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where @ = (W, a, b). The joint probability of (v, d) is computed as follows:
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In general, the goal of the RBM learning algorithm is estimating 6 that decreases the energy
function (Hinton, 2010). Hinton (2002) proposed an efficient algorithm for training RBMs, known
as contrastive divergence (CD). The CD is an unsupervised algorithm that uses an iterative process
known as Gibbs sampling. The main idea of this algorithm is initializing the visible layer with
training data and then perform the Gibbs sampling. The CD is an easy and fast learning algorithm.
Therefore, the most important use of the RBM is as learning modules that are composed to form deep
belief nets (Hinton, 2010).

In order to perform the CD algorithm, we need to compute p(d|v) as follows:
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where ¢(z) = the logistic function. Then, we compute p(v|d) by:
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where N is the normal distribution with mean v and standard deviation 2.
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Figure 3: The Gibbs sampling procedure on CD algorithm

The Gibbs sampling procedure is illustrated in Figure 3. As we can note, first we initialize the visible
layers with the training data. Next, we estimate dg using the equation 6. From dy we estimate v;
by equation 7. This step is called reconstruction. Finally, from v; we estimate d; using equation
6 again. This whole procedure can be done z times, however, with just one iteration the algorithm
works quite well (Hinton, 2010). After proceeding with the Gibbs sampling, the CD update rules for
0 are described by the following equations:
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where 7, p and « are known as learning rate, weight decay and momentum, respectively. Hinton
(2010) suggests n = 0.01, p = [0.01,0.0001] and « = 0.5 for the first five iterations and o = 0.9
otherwise. Usually, the terms of @ are initialized randomly. Further, Hinton (2010) also suggests to
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divide the training set into small mini-batches of 10 to 100 cases. A pseudocode of the constrastive
divergence is presented in Algorithm 2.

Algorithm 2: The contrastive divergence procedure

Function rbm_training (X, k, n, p, «, bs, it):
Input :The training data X with N samples;
The number of hidden neurons k;
The parameters 7, p and «;
The batch size bs;
The maximum number of iterations 4t
Sample 0 from a normal distribution with ;4 = 0.1 and o = 1;
Split X in batches X}, with bs samples;
Initialize ¢ = 7 = 0;
while j < it or 6 converged do
for each batch Xy, do
while i < bs do
vo = Xp; Sample dg from equation 6;
Sample v; from equation 7;
Sample d; from equation 6;
Update 0 from equations 8, 9 and 10;
1=1+1
end

end
j=7+1
end
Return:@;

3 A new approach to determine weights for ELMs

In this section, we introduce the new approach to determine weights for the extreme learning machine
using the restricted Boltzmann machine, which we call RBM-ELM. Our focus is on the input weights
W. Since the ELM assigns W at random and it is used to compute H and 3, there inevitably exists
a set of nonoptimal input weights and hidden biases values, which may influence on the ELM
performance (Han et al., 2013). Thus, the RBM-ELM main idea is to replace the ELM input weights
and bias by the RBM visible weights and hidden bias, as shown in Figure 4.

Figure 4: An illustration of the RBM-ELM approach

As we can note in Figure 4, the RBM-ELM approach has two stages. In the first stage, we compute
the input weights and bias for the ELM through the RBM training. In the second stage, the results of
the first stage are used to set { W, b} and then to proceed with the standard ELM training. To better
describe these two stages, consider a training set composed by {X¢, Y}, where X; and Y are the
input and output training data, respectively. First, the RBM is trained with X;. All the knowledge
obtained by this network is stored on its weights and bias. So, after the RBM training, we set the
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ELM input weights and bias with the same values of the RBM weights connections and hidden
bias, respectively. Next, we carry out the ELM training using X¢, Y; and the computed {W, b} to
compute H and 3. Since we use the same input training data to feed the visible and input layer in the
RBM and ELM, respectively, v and x have the same shape. Thus, to guarantee the same shape for W
and b on both networks, we need to set the same number of hidden neurons for both algorithms. A
pseudocode of this approach is described in Algorithm 3.

Algorithm 3: The RBM-ELM procedure

Function rbm_elm_training ({X¢, Y}, &k, 1, p, @):
Input :The training set {X;, Y;} with N samples;
The number of neurons k;
The parameters 7, p and «;

2 From Algorithm 2 call rbm_training (X, k, 7, p, @) to get W and b;

From Algorithm 1 call elm_training (X, Y, k, W, b) to get H and 3;
Return : W, H and 3;

As mentioned earlier, a stack of RBMs has been used to improve the ELM performance (Cao et al.,
2014). Nonetheless, its goal is to find the feature map for the input layer, i.e., setting the matrix H on
the ELM. As a drawback, this method may take a long computational time to achieve a good feature
map, which removes from the ELM one of its great advantages: the fast training phase. Our approach
aims to take advantage of the RBM generalization capability. Since the RBM models the probability
distribution over the data training, when we compute the ELM weights and bias from an RBM, we
also transfer the knowledge obtained by the RBM training phase to the ELM. Consequently, we
improve the feature map extracted by the input layer in the ELM.

As we can note in Algorithm 2, the RBM training is carried out until the weights convergence or a
specific number of epochs. Comparing with the ELM training phase, the RBM training may take a
considerable computational time if we wait for the convergence or set a high value for the number
of epochs. However, the reconstruction error on the entire training set falls rapidly and consistently
at the start of learning and then more slowly (Hinton, 2010). So, the weights converge nearly to
their final values after only a few epochs, but the further fine tuning takes much longer (Yosinski and
Lipson, 2012). As our intention is to determine the input weights and bias for the ELM, the proposed
approach works well performing just a few epochs of the RBM training. So, the RBM training phase
does not affect too much the time-consuming of the whole algorithm. In the next section, we show
the effect of the number of epochs on the algorithm performance.

4 Experimental results

In this section, we carry out two experiments for classification problems. First, we present a thorough
example to better describe the RBM-ELM. Next, we compare our approach with the standard ELM,
the state of the art ELM-RO, and the ELM-AE, using several well-known benchmarks. All procedures
were implemented in Python and Tensorflow, and performed on an intel core i7-6 CPU @ 2.50 GHz
PC with 8 GB of RAM and a Nvidia Geforce 940M. The code developed is available upon request.

4.1 Illustrative example

In this illustrative example, we investigate the RBM-ELM configurations in order to improve the
algorithm performance. We developed a vowels database, which contains 1380 samples with 276
examples for each vowel. In Figure 5 is shown some samples from the database, where each vowel is
represented by a image with 30 x 30 pixels. Thus, the vowels database has 900 input features and
five classification labels.

The vowels database was shuffled and split to 70% for training and 30% for tests. The ELM and
RBM-ELM were run 30 times to compute statistics and we use the mean and standard deviation of
the classification accuracy as performance metric. In general, our goal in this section is to present a
discussion about the RBM parameters, the number of epochs used to train a RBM, the running time
of the whole approach, the number of hidden neurons, and compare the performance between the
ELM and RBM-ELM.
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Figure 5: Some samples from the vowels database

First of all, we need to choose the number of hidden neurons (k). We perform the ELM and choose &
empirically based on the best performance of this algorithm. To be fair, we decided to use the same
value of k to compare both methodologies. In table 1 is described the ELM performance varying the
number of hidden neurons. As we can note, the best performance is achieved when k = 400. Thus,
we use this number of hidden neurons to perform the RBM-ELM as well.

Table 1: The ELM performance for vowels database varying the number of hidden neurons

# of neurons Accuracy (%) Time (sec)
100 79.677 4+ 1.985 0.050 £+ 0.006
200 85.789 + 1.356 0.096 £+ 0.010
300 86.771 £+ 1.555 0.166. 4+ 0.016
400 87.975 +1.500 | 0.239 + 0.029
500 86.972 + 1.721 0.329 £ 0.027
600 85.668 + 1.793 0.436 £+ 0.026

As described in section 3, in order to apply the RBM-ELM, first we need to perform the stage 1 of the
algorithm, that is, to train the RBM and compute the input weights and bias for the ELM. As we can
note in Algorithm 3, the RBM has seven parameters, where X is the input data and k is the number
of hidden neurons, which is the same value that we found for ELM, k£ = 400. For 7, p, a and bs, we
use the values in the interval suggested by Hinton (2010), presented in section 2.2. These values are
described in Table 2 and their fine tune was achieved empirically by tests. Finally, we need to choose
the number of maximum iterations i¢, which affect directly the time consuming of the algorithm.
Indeed, we could wait for 8 convergence, however it may take a long time and we do not need to do
that. As described in section 3, we need a few iterations to put the weights nearly to their final values
and these values are good enough to improve the ELM. After finishing the stage 1, we perform the
stage 2 of the algorithm with the weights and bias computed from the stage 1. In table 2 is described
the RBM-ELM performance varying it and computing the time consuming for each scenario.

Table 2: The RBM-ELM performance for vowels database varying the iteration number of the RBM
training

RBM parameters: k = 400, = 0.001, p = 0.01, @ = 0.5/0.9 and bs = 100

# of iterations (ir)

Accuracy (%)

Time (sec)

10
30
50
100
300
500

90.708 £ 1.518
90.442 +£1.144
92.769 £1.078
90.724 +1.303
90.611 £ 1.420
89.067 £ 1.441

1.421 £0.115
3.617 £0.120
6.008 + 0.099
11.667 £ 0.096
33.521 £0.311
54.901 £+ 1.336

As we can note in Table 2, the RBM can improve the ELM performance even with a low number of
iterations. For ¢¢ = 50 the algorithm achieved the best performance. Nonetheless, for it less than
100, the approach may get good performance. However, the higher is the value of ¢, the higher is the
running time. Comparing the RBM-ELM with ¢t = 50 and the best ELM performance in Table 1,
our approach improve the classification accuracy in almost 5% and decrease the standard deviation



around 0.5%. On the other hand, the standard ELM training is 25 times faster than RBM-ELM with
50 iterations. In fact, we need to make a trade-off between accuracy and computational time. In this
case, the improved performance is very desired.

Huang et al. (2006) affirm that the ELM learning not only tends to reach the smallest training error
but also the smallest norm of weights. Bartlett (1998) states that the smaller the norm of weights,
the better generalization performance a feedforward network tends to have. So, we also compare the
norm of the input weights obtained by the ELM and RBM-ELM for the vowels database. Based on
the best performance of both ELM and RBM-ELM in Table 1 and 2, respectively, the norm for the
ELM is 346.602 and for RBM-ELM is 2.839. Hence, according to Huang et al. (2006) and Bartlett
(1998), for this database, the RBM-ELM tends to have a better generalization performance than the
ELM.

In Figure 6 is illustrated the graphic difference between the ELM and RBM-ELM input weights.
Since the ELM set the weights randomly, its plot looks like a noise. On the other hand, in the
RBM-ELM the input weights show some low-level features, even using 50 iterations of the RBM
training phase. These plots help to explain why RBM-ELM achieves a better performance than ELM
in this database.

Figure 6: The plot of the input weights for the ELM (above) and RBM-ELM (below).

4.2 Standard benchmarks

In order to evaluate the performance of the RBM-ELM we carry out experiments with different
well-known classification benchmarks from UCI repository (Lichman, 2013). We still compare the
RBM-ELM performance with the standard ELM. In addition, we include two more algorithms, the
ELM-RO and ELM-AE, both discussed in the introduction. All the databases used in this experiment
is described in Table 3. In this table, each database with permutation equal to yes was shuffled and
split to 70% for training and 30% for tests. For permutation equal to no, it means that this database
has a test partition. The four algorithms were run 30 times to compute statistics. We used the mean
and standard deviation of the classification accuracy as the performance metric. Further, we perform
the non-parametric Friedman test followed by Wilcoxon test as a pos hoc to compare the algorithms
performance (Derrac et al., 2011).

In Table 4 is described the RBM-ELM parameters configuration for each database presented in Table
3. These parameters were selected empirically using the same process detailed in section 4.1. For a
fair comparison, the ELM-RBM, ELM-AE, and ELM-RO use the same number of hidden neurons of
the ELM, which is described as % in Table 4. In Table 5 is reported the performance of all algorithms
for each database used in this experiment. In this table is described the mean and standard deviation
of the classification accuracy and the mean value of the running time for each approach. Moreover, in
order to improve the results visualization, in Figure 7 is depicted the boxplots for all approaches also
for each database.

According to the results presented in the tables and boxplots, we can note that the ELM-AE, ELM-RO
and RBM-ELM have better performance than ELM for most of databases. Only for credit Australia
and spam databases, these approaches were not able to improve the classification performance. In fact,



Table 3: The classifications databases used in this experiment

Database # of samples | # of features | # of labels | Permutation
Alphabet 11960 900 26 Yes
Credit Australia 690 14 2 Yes
Diabetic 1151 19 2 Yes
DNA 3186 180 3 No
Gisette 7000 5000 3 No
Isolet 7797 617 26 No
Madelon 2600 500 2 Yes
Spam 4601 57 2 Yes
Urban land cover 675 147 9 Yes

Table 4: The RBM-ELM parameters configuration for each database

Database RBM-ELM parameters
Alphabet k = 950, it = 25, n = 0.001, p = 0.001, « = 0.5/0.9 and bs = 150
Credit Australia k=35,it=25mn1n=0.1,p=0.1,« = 0.5/0.9 and bs = 150
Diabetic k =50, it =50, n = 0.01, p = 0.001, @ = 0.5/0.9 and bs = 100
DNA k = 250, it = 50, n = 0.0001, p = 0.01, « = 0.5/0.9 and bs = 250
Gisette k = 850, it = 50, n = 0.001, p = 0.01, « = 0.5/0.9 and bs = 250
Isolet k = 1250, it = 25,7 = 0.01, p = 0.01, & = 0.5/0.9 and bs = 250
Madelon k = 250, it = 50, n = 0.001, p = 0.001, « = 0.5/0.9 and bs = 50
Spam k = 150, it = 50, 7 = 0.001, p = 0.0001, @ = 0.5/0.9 and bs = 100
Urban land cover k = 200, it = 25, n = 0.01, p = 0.01, « = 0.5/0.9 and bs = 20

for these two databases, all four algorithms got the same performance. However, for the remaining
databases, the ELM was improved by at least one of the others methods. So, the ELM has the lowest
overall accuracy of all methods. On the other hand, the ELM is still the fastest algorithm among
all. Indeed, this is expected since the other approaches require more processing time to compute
the input weights. When we look at the RBM-ELM performance, we can note that it achieves
the best performanc, alone or followed by another method for all database. As consequence, the
RBM-ELM obtained the highest overall accuracy. However, it also gets the highest total time among
all algorithms.

We perform the Friedman and Wilcoxon test to better evaluate the performance of the algorithms
for each database. First, we perform the Friedman test, if it returns p,qiue < 0.05, it means that
significant differences were found and we can proceed with a post-hoc procedure to characterize
these differences. Next, we perform the Wilcoxon test for pairwise comparisons. If the Wilcoxon
test returns Pyqrue < 0.01, it means that there is a significant difference between the compared
pair (Derrac et al., 2011). We applied these tests to all databases together and individually. For
credit Australia and spam, the Friedman test returned p = 0.841 and p = 0.180, respectively. Thus,
for these databases, there is no significant differences among the algorithms. Since the algorithms
accuracy performance is too close, this is expected. For the rest of the databases, the values returned
by the Friedman test is always less than 0.01, then we perform the Wilcoxon test for all of them. As
we have too many pairwise comparisons, we decide to highlight the main test outcomes as follows:

e For the alphabet, DNA, and madelon, the RBM-ELM is significantly different when com-
pared to all others.

e For the gisette, isolet and urban cover land, there is no significant difference between the
ELM-AE and RBM-ELM. Moreover, they are significantly different when compared to all
others.

e For the diabetic, there is no significant difference between the ELM-AE and RBM-ELM. In
addition, this pair is significantly different when compared to all others.

e In the overall, the RBM-ELM is significantly different when compared to all others.

According to the statistical test and the accuracy performance described in Table 5, we conclude that
for alphabet, DNA, and madelon, the RBM-ELM is the best algorithm; For the gisette, isolet and
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Table 5: Algorithms performance for each database. In bold, the best algorithm(s) according to the statistical test

Database ELM . ELM-AE . ELM-RO . RBM-ELM.
Accuracy (%) Time (sec) Accuracy (%) Time (sec) Accuracy (%) Time (sec) Accuracy (%) Time (sec)
Alphabet 72.784 +0.713 3.03 76.934 + 0.777 12.22 73.285 4+ 0.655 3.21 78.677 +0.611 38.74
Credit Australia 85.732 £ 2.292 0.004 86.025 + 2.237 0.078 85.829 + 2.280 0.005 86.070 £ 1.960 0.380
Diabetic 74.415 4+ 2.562 0.010 72.726 4+ 1.280 0.016 75.033 + 1.866 0.011 75.323 +1.996 0.442
DNA 89.232 + 0.827 0.146 93.931 + 0.549 0.225 94.139 + 0.364 0.152 94.592 + 0.028 3.279
Gisette 92.130 + 0.809 2.922 96.383 + 0.479 11.804 94.953 + 0.519 38.587 96.116 + 0.459 160.23
Isolet 94.032 £ 0.385 3.738 95.244 + 0.233 6.155 94.746 £ 0.298 3.831 95.135 + 0.218 23.342
Madelon 55.393 +1.732 0.129 57.234 +1.429 0.253 66.145 + 1.421 0.955 82.286 +1.139 9.706
Spam 91.178 £ 0.899 0.096 91.066 £ 0.684 0.175 90.826 £ 0.692 0.099 91.137 £ 0.696 1.715
Urban land cover 76.288 + 2.860 0.044 78.998 + 3.080 0.119 77.602 + 2.523 0.045 80.098 + 2.589 2.161
Overall mean/Total time | 81.243 + 1.453 10.119 83.171 £+ 1.194 31.045 83.618 +£1.179 46.895 86.604 +1.077  239.995
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urban cover land, both RBM-ELM and ELM-AE are the best approaches; And for the diabetic, the
RBM-ELM and the ELM-RO are the best algorithms. Considering the overall result, for this group of
benchmarks, our analysis indicates that the RBM-ELM is the best algorithm.

4.3 Experiments remarks

As we can see in sections 4.1 and 4.2, the RBM-ELM improved the standard ELM and has better
performance than the ELM-AE and ELM-RO. Nonetheless, our approach presents the highest time-
consuming. Indeed, it is a drawback, however, for the gisette database, the largest one in our
experiment, the RBM-ELM spent on average 160.23 seconds to improve almost 4%, when compared
to ELM. We consider it acceptable, since we have a good improvement on the final performance.
Another issue about the RBM-ELM is the RBM parameters configuration. For some databases, we
need to spend some time to find a good configuration. Unfortunately, to use the RBM we have to
handle with this issue. Nonetheless, Hinton (2010) described a guide to setup it. Following this guide,
we can reach good values for the RBM parameters in a faster way.

Although the statistical test points out that the RBM-ELM as the best algorithm for these databases,
the ELM-AE and ELM-RO are still good approaches to improve the ELM. However, the RBM-ELM
is more robust, since this approach is always in the group of the best algorithms for all databases. The
ELM-AE and ELM-RO sometimes got bad performances such as in diabetic and alphabet databases,
respectively. This does not occur with the proposed approach.

5 Conclusion

In this paper, we propose a new approach to determine the input weights for extreme learning
machines (ELM) using the restricted Boltzmann machine (RBM), which we call RBM-ELM. In order
to evaluate our new approach, we present an illustrative example detailing the RBM-ELM parameters
configuration. Next, we carried out an experiment with standard benchmarks and compare the
RBM-ELM performance with standard ELM, ELM autoencoder (ELM-AE) and a state of the art
ELM random orthogonal (ELM-RO). The analysis of the results showed that the RBM-ELM was the
best algorithm for the performed experiment and it was more stable than the other ones. On the other
hand, our approach had the highest time-consuming among all algorithms. As we investigated, in this
case it is worth to mention the trade-off between the improved accuracy and larger computational
cost. In the future, we will work to improve the selection of the number of hidden neurons in the
proposed approach.
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